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; Consider a randomized block design where the errors are correlated
within a block but are independent from block. to plock. The theory for testing
the significance for the treatment eftects was done by Box [1954] and Geisser
and Greenhouse [1958), and a partial solution was given by Gray ill [1954]. A
more general solution to this problem is now presented and s._veral test proced=-
ures are derived.

The variance-covariance matrix for the ghove design can have two fcrms.
When the correlation coefficient, p., differs from block to block, an exact test
of reduced dimension is proposed which can be used in solving problems in
growth studies. When p: 1s identical to p for each block, two tests are pre-
sented. One is exact when o is known; both are approximate when p is unknown.
In this latter case, comparisons are made between the two tests using a specified
form for the covariance matrix and estimating p. For this example a Satterthwaite
test is most accurate; but, the usual F-test, which ignores the correlation,
performs well when |p| varies somewhat from zexo.
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Consider a randomized block design where the errors are correlated
within a block but are independent from block to block. The theory for
testing the significance of the treatment effects was done by Box [1954]
and Geisser and Greenhouse [1958], and a partial solution was given by
Graybill [1954]. A more general solution to this problem is now presented
and several test procedures are derived,

The variance-covariance matrix for the above design can have two
forms. When the correlation coefficient, pj' differs from block to block,
an exact test of »=2duced dimension is proposed which can be used in sclving

problems in growth studies. When p, is identical to p for each block,

3
two tests are presented. One is exact when p is known; both are approxi-
mate when p is unknown. 1In this latter case, comparisons are made between
the two tests using a specifiad form for the covariance matrix and esti-~
mating p . For this example a Satterthwaite test is most accurate; but,

the usual F-test, which ignores the correlation, performs well when lpl

varies somewhat from zero.
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CHAPTER 1
INTRODUCT iON

A basic assumption in the model for a randomized block desiga (RBD)
having t treatwents a:d b biocks is that the errors are normally and
independently distributed. The physical nature of some experimental
situations, however, offers congiderable doubt as to the validity of this
assunption of independent errors. ©Data occux in cases where ther= is no
possibility of introducing randomization bacause the factor to be studied
is the effect of time or position. Box [1954,, 1954)] and Geisser and
Greenhouse {1958] have shown that these correlated crrors can seriously
affect the probebility of the Type 1 error of certain tests of hypothesis
from the standard Analysis cf Variance.

Correlated errors are particularly prevalent when repeated msasure-
ments are made on cneé experimental unit (e.g., growth curves); in general,
when randomization of exverimental units to treatment levels is restricted.
In some cases, correct tests on the significance o treatment contrasts

have been achieved through insight as Yates [1937]1 (theory for this type

of solution can be found in Chakrabarti (1962] p. 62 £f), or through the

use of Hotelling's ’1‘2 test {1931} (if » > t), but no ganeral approach has

been given.

The purpose ¢i this paper is tc give some exact and spproximate

criterions for testing the effects of independent sets of treatzsent contrasts

in & FBD when the errors are correlated within a k.ock but are independent
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from block to block. For testing the equality of all the treatment means,
Graybill {1954] has given an exact test using Hotalling's Tz. But this
is useful only when b > t and the covariance matrix is the same within
each block; it also involves counsiderable computation when t is large.
The applied staristician, howcwver, is sometimes confronted with the case
where b < t, or gituations where adequate means are not available for
computing large-order inverses. He might even be interested . a speci-
fied set of treatment comparisons. It is these areas that are to be
studied in thire work.

Caseg are considered wher- the correlations within a block are a
Junction of a single unknown parameter, pﬂ, and the structure of the
covariance matrix is the same within each block. The prcblem is then
approached from two avenues (which in some cases may lead to the saue
sslution):

1) Break down the varihnce-éovariancg matrix irto an additive

de~omposition as illuntrafed by Good [1969) where the cor-
relation coefficient within a biock is dominant in oniy a

few mulripliers. Transformations orthbgonal to their cor-
respording vectors would lead to less (ushally Zero} corre-

lated data. Yates' {1937} solution is essentially this;

where Qj is the multiplier of only one additive component

(in fact, this is a latent root and vector of the covariance

matrix).

2) when cj is identical to o for each block, make an exact
F-test i o is known. Otherwise, estimate the unknown
correlxtion parameter and through this make an approxisate
F-test. ‘}\ cclution similar *o Satterthwaite [194&] would

result when this is substituted into Box's theory.

e
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An example with a common form of the covariance matrix will be con-
sidered for both the above. In the latter case, a Monte “arlo study will
be made comparing the exact test with the approximate one using this example.

An easily computed estimate for p will also be given.

L,

e - e
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CHAPTER II

THE C-METHOD

Consider a class of randomized block designa with b blocks and

t treatments and let ¥, 3 be the observation in the jth block on the ith

treacment. Assume that Yij may be represented by a linear modsl

Yijzu+1i+8j+eij , L=1, ¢ ,t;3=1, ¢¢¢ , b

where y is the grand mean, T reflects the fixed effect of the itD trmat-

t

ment subiect to thie condition 2 T = 0, Bj reflects the effect of the
i=1

jth block, and Eij veflects the error effect. Alternatively, denote che

model for all the elements of the jth block by

L= w+BIl+ e o =1, 000 b (1)

where

- 1’ 2! t
t as e ) .
E] \Cljr 2j' ] Etj
It is also assumed that
e, v N, ij), independently, j = 1, **+ , b (2)

where 0 is the null vector and tj is the variance-~covariance matrix of ij‘
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Suppose it is desired to test the significance of the treatment
effects in tho model of (1). While no exact test exists that is applic-
able in all cases for an unknown } 3’ it is possible to find an exact
method for testing certain sets of treatment contrasts provided t 3 is
of a special form. PRut information on other sets may not be attainable,

and the test statistics for these sets will usuzlly be correlated. So

- ‘the overall power of the test is often reduced. Such a loss, howewver,

inight be tolerated at times in order to awveid cumbessouwe approximations
and difficult computations.
Consider a covariance matrix that can be expressed as

- 2 . »
tj=a(lt+pjl4) e J =1, , Db (3)

wh_e'ré 52' and pj are unknown constants and M is a known matrix, ¢t x ¢, with
zeros along its diagonal, i.e., all the Yij's have equal variances. It

is assumed that ti is positive definite. If tj has the form

2
*j=g(1t+M0+ij)

it can be transformed to

}s - o2 (1 + o, M)

3

as in (3), where t; =L$jL', LL' =f;’-1, LMOL‘ s%l, LML' = M* . 2And if

$j mdztrt + M(p,)]

3

i.e., if M is a function of pj, express ij as

bow g2 + +o2M 4 ees
ty o (X, ijl °jM2 ).




Then it might be possible to use
fa = 021, + o M)
j e " P35

as an approximation for tj since powers of pj greater than one may be
negligible.

Assuming tj haé the form in (3) when using the RBD of (;), in
,geneial; greatly restricts the iandomization of treatments to blocks.
In fact the treatments must be positioned in a certain érder in each
 block 30 as to guéranteg that the errors within a block are properly
correlated, unless thé corzeiation is related to the treatments rather
than the plots, e.g., see Geissér and Greenhouse [1958]. At times,
howe_.-ver, the treatments in certain sets, e .g., the odd-numbered treat-
menpts, can be random.y assigned to certain plots, e.g., the cdd-numbered
plots. The example at the end of this chapter will better illustrate
this idea. ‘

With the {  given in (3), it can be shown that there exists a

matrix, C, t x q, of rank g such that

c'MC = 0 ’ c'C = Iq (4)

i.e.,

By transforming Y 6 to ng = §j the design matrix becomes one in which the

3

errors are independently and normally distributed. This transfcrmation

then leads to the necessary statistic for testing the hypothesis:

=

=
i~
]

o

(5)

&
-~
1~
h S
(=]

ikl

et}
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where

10

fo L C'l‘.l.'cc'l]ml?:'cc' . C'l o

K=
Cl R cl

(6)

™
10

Notice in (6) that when C'l ¥ 0, C must be adjusted for the effacts of

C'l . The initial problem then is one of clicosing the appropriate matrix,

C. Although the following approach has many good propercies, there is
no unique way of constructing C.

Using the technique illustrated by Good {1968], it is possible to

break down M into an additive decomposition, i.e.,

t
M= § A aal ¢)
T !

vwhere )\ i is a latent root and g { is the corresponding orthonormal latent

vector of M. Since # 3 has equal variances, M has zerces along its diagonal

an? the trace of M is 2ero, i.e., the sum of the ki is zero. Therefore,

there exists at least one negative root. Consider pairing each of these

negative rcots, say )‘k’ with a positive root, say lg, to form the separate

A
R g -‘/ﬁ-l- (8)

It is

ratios

and let p ba the number of these pairs of nucative-positiva roots.

sugges’el that )‘k and ll be choser ia such a manner that Pk 2 is as close

to one a: oossible. Ra-~label the Pk g 80 that !LL is the smallest ratio,
(4

Rz is the next smallest ratio, **+ , and Rp is the largest ratio. Now

construct the orthonormal vectors
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2
B, (L +R) “(a +R @), v=1, " ,p (9)

(SIS

where 8 and , are the latent vectors corresponding to the roots, )‘L and
Xk v in Rv . There is at least one of these vectors since there is at
least one pair of posiiive-negative roots. At the most there are as many
such vectors as one-half the rank of M (if the rank of M is even), i.e.,
there are as many such vectors as there are possible ratios, Rv . Each
vector, g . is a column of C.

It is important to realize the limitations and assets of the abowve
method of construction. If M is non-singular and C'l ¥ 0, then C will
ba useless unless M has more than one pair of positive-negative roots,
for one such pair leaves no degrees of freedom in %testing the hypothesis
of {5). when M is singular, there are no restrictions as C can be aug-
mented by those latent véctors, g orthogonal to M. Necessarily the e,
will be orthogonal to the @-v . Then the colums of C consist of the

constructed vectors, g , of (9), and ti.2 latent vectors, a,. orthogonal

to M, i.e.,

Bor =t 0 @-p a,'s orthogonal to M] . (10)

Hence,

t~v~§-—~,ifrnrank (M) is even

¢ - E%l , if r = rank (M) is odd

To show that the conditions of (4) hold, let the ~olums of C

equal xc' c=1, **+ , q. Then

P




l,c=¢
LYl = from (7) and (9)
c=C 0, cyc .
s0 that
C'Cm 1Y .
q
Also,
Aa, + AR
L= | D _
2 » Af 1:2 " gc'
1+Rc
M=
0 y ify' = (_n_":
so that
1 - ]
LM =0 » foralle, e
therefore,
C'MC = &
and
2

c'tjc =1, .

Recall that in constructing C, the ratios Rv ware chosen to be as

close toorme as poesible. This was done for several reasons. If some Rv

equal one, it is posrible to construct a secord malrix, Cz. orthogon 1
to Cl £ C, which satisfies the conditions of (4), i.e.,
and

CiC, =% , 1¢¥3:1,J=1,2 . (11)

13
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Then two sets of contrazts as given in (5) can be tested instead of one,

and wore degrees of freedom are involved in the test. The colums of C

b3
are the same as in C, replacing &, k, v, q, and Rv by ll' kl' vl' ql' and
lnvl . The colums of c2 are the corthonormal vectors
§ =g -a ) , v,=1 s ,q (12)
R PRI 2 2
where Yy, and %, correspond to the roots, Alz and xkz. in 2Rv2' i.e.,

R’-ztkz' which represents the ratios, Rv' that equal onie; and q, is the
number of these ratios identical to one. Hence, the rank of cl is ql' i.e.,
q, and the rank of C, is q, . If C)1 ¥ 0, then g, must exceed one or

there will be no degrees of freedom aviilable for testing the hypothesis

of (5); and the restrictions that held for C can be applied to C

1 »
Note that condition (4) holds using Cl gince C1 = C. For c2 the
column vectors, § , are orthonormal sco that C!C_= 1 and
"V2 2°2 q2
§' M§ -—l'(k a' -2 a'd(a, . - a )
"Vz ‘Vi 2 22‘22 kz‘kz "9.2 'kz
= 0
gsince the a. are orthonormal and X - =) . Thus, C!MC. = ¢ and con-
-1 12 kz 2 2
dition {4) follows. Further, since _.R =1, §' 8 « 0, so that
2 Vz ‘V2 'Vl
Cicz = & . Hence, all conditions are satisfied and C1 and (:2 can be used

to test the hypothesis of the nature of (5).
For the ratios, Rv, unequal to one it is possible to construct a

third matrix, Cg, with the proverties that
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I y, 1 =3

nt =
C3 Ci

. ® , i™1,2
and

*? * = 3 = XX
C3 MC3 dlag(av3) ' Vs 1, ' 4, i

where a, is some constant greater than zero and a4 is the number of ratios,
3

Rv' not equal to one. The colurms of C* are the orthonormal vectors

3
R
- ——3—v-}——- (u - R-z a ) . v, = 1 X} q (13)
Qv, L+ 3Rz %3 3vy %k3 kI '
v

where 9_23 and g'ka are the latent vectors corresponding to the latent

roots, )‘13 and ka, of 3Rv3' i.e., Rl

Rv, that are unequal to one. The rank of C; is 9, and the same restrictim

30k » which represents the ratiose,
3

holds for q, as did for qa, when C;'} ¥ 0 . Notice nov that

2
3RV3 t
s -—-—-—-——2-(9 -3R~luk)‘ Z Aa.a’ (91 ~3R-lgk) j
v3 1+3Rv L3 vy “k3 i=1 i=-1-1 3 V3 3
3
.R2
LN R0, a 1'] e )
e~ a - T Aoa '{a - a
1+ 332 13"’13 3 V3 k3"k3 ‘i3 3 V3 ’k3 1
v
3
JR2
 — U3 (\. + R ?:
3 vy
-1
2 <
. - by LD
[l ' 3R"3] [3RV3 ta "3]
3“4 -1
Y V3
w -}
k3 R2 .l
3 V3




12
2
- |xx3| CR, m D
Hence, a_ is spproximately zero when Rz is near one, or A, is near
v3 I vy k3

zexo. This implies that in these casss

cg'ucs - diag(av3) -9
so that
2
c;'tjcg =o'l +p, dagla )]
. 2
=01 .
. 0 q3

So if the .v3 are small, CS'HC% is near the null matrix, and it might

prove feasible to ignore these contrasts. Then C; could be used along

with Cl, or Cl and Cz, to form another set of contraste orthogonal to the
others. It is easy to ‘erify that the conditions of (4) hold with this
spproximation.

If the a"'3 vary greatly so that Ca'!'cs is not near ¢ it would be

advantageous to examine this matrix using the firat method developed above.

Lat

* ! * = = "o

M C3 KI} diaq(av3) ’ v 1, ’ q3
so that

{* = 2 o, MM

- CE'tjCE

A matrix, C,, similar to C

4 1 is sought. First, nctice that the ‘v3 are

latent roots of the diagonal matrix M* . And if 3R:, is near one,
3
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3Ri3 - 1 might be negative or positive implying that there might be a
negative and positive av3 « If this is true there is a matrix, C4, that
can be constructed with colums simiiar co the vectors of (9). Now the
ratios, Rv, are formed using the av3's, and the gi are unit wvectors, i.e.,

the latent vectors of M* . letting

™ *
C3 C3C4 ‘

it follows from previous results that

. a:v . t =
C3m3 ¢ C3C3 I

and

C3Ci=® P i=1, 2

Also, C"Mcg is nonsingular, as a, ¥ 0 except when :Ri = Y, and this is

3 3
3 3
nct possible by the manner in which Cg was constructed. Therefore, c;’nc;
must hm_re at least two ,ais of negative-pesitive av3 or the matrix, C'3,

will be useless since there will be no degrees of freedom available for
testing the hypothesis of (5), based on ., . Of course, this restriction
dous not hold if C'3'_x =0 .

H:nce, it has been shown that by kes2ping the Rv near one thavre myy

exist as many as three orthogonal matrices, C,, C,, C,, oxr €., C,, C?, with

) 3 1° 727 73
the properties that

ishaals s
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30 that

2
C't.Cc. =g1 P
it) i 14

i=1, 2,3 .
In terms of tests of hypotheses this means that three different sets of
contrasts can be examired instead of one. However, Citjck is not
necessarily zero except when i = 2 and k = 3, so these sets will generally
not be independent. The result is sewveral depende... tests. )

To derive the tz2st stati:tics for the hypothesis of (5), uwsing the

avove matrices, recall the model given in (1), i.o.,

where
Y.~ N {E(Y.)), 1.1 , independently .
=) t[ = ]

Transform Y  to K!j = Ej using the matrix, K, given in (6). Since Kl is

o, gj is given by

.= KY o= V1 o+ Ko (14)
=3 -3 - -3
with
MY =K
sy o= Tebowe
. 3
PR Y , froe (4} {15;
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c'i1'c
=C'C-——
1'cc’)
therefore,
I ¢ C'l =0
q - - .
]
KK' = C'_];}'C . (15)
I, - ; C'1F0
q llccl}
Since the ¥, are i.i.d. normal va:iates, it follows that
§jm Nt(l(p azlu('). independently , j = 1, <+« , b,
therefore,
b
z .% I 2y~ ¥, %ozxx') . a»
i=1
Consider the § adratic form
SST = bZZ,
- bR, (10
= 1 b 3ST ,
whare Y = = ] ¥y - From (17) it follows that == is distributed as
=1 o
a chi-square since XX' is idempotent, i.e.,
§ST 2
>~ Xg ™) (19)
sl
whare
d = tr(Xx')
txil ) , C'1=0

Lril } - ¢t
=]

-

L

(8]

S
(o]
fye
L %
o
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The K< are a set of indenendent

mutually orthegonal and K1 = 0

16

i
(o]

. (20)

R 8
o

E(TE:)E(Zo)

l;K'KI .

centrasts in 1 since the rows of K are

It will be shown oelow that there exists

a test statistic for testing the hypothesis

vs H
a

or,

(21)

Kr =0

Kr # 0

k’k =O i = l[ et ’ d
2=

k't #0

Sil

whare the Ei are linear combinations of the rows of K and are wutually

orthogonal, cor, these vectors are the basis fcr the vector space of K and

arc orthogonal te 1

The results of appendix A will now be used in deriving the test

svatistic tor (21) given by

j
;’
1




MST
F = MSE (22)
with
1
MST = 3 SST
=1 Y'¢. (A)Y (23)
=g LAl '

where Qt(A) is given in (Al), A = K'K, and

'S VS PIRTTR AS I

and

1
b-1a SSE

-
(b-1)d

MSE =

Y-0(A)Y (24)

where Q(A) is given in (A2) and A is the same as above. Recall that it

was assumed in (1) that

Yo N B, D), L= diagfy)

So ”S*s% is distributed as a chi-square if -12- Q(A)L is idempotent. Now
g
A = K'K{ .K'K
At] Kt]
2
=¢A , from (16) (25)

and this result with that of (A4) implies that
2
[——; Q(A)z] =Lomz .
g o

_— " xe(Ae) (26)

Hence,




where

1
= Q(AH]

e = tr
a
11 b
= <= (b-1) ) #r(x'e.),  from (a5)
2b . J
g =1
]
- | 2
= {(b-1)tr(K'K), as Ktj =g K
= (b-1)4d, from (20)
and
xe = 0, from (A7)
since
Eyiin = 'K, foy ool
<
Therefore,
St .
— = . 1oy
'3( ,}T" )d
and from (19)
SST 2
‘""é"'\’ XS(O) ’

(64

if Hy ol (21) is true. Further, $SE and SST are independent since (A!

S .
and (25) imply that Qt(A)XQ(A) = ¢ . Therefore, §§§-and -§§~are indep. «nt
a o

chi-squares and their ratio divided Lv their respective degrees of fr ecdom

vield

MST

P2 ——

vSE T (d, (b-1)a]

if i, is true. And the hypothesis given in (5) can be tested using the

above result.




In cases whz2re there are
filling the conditions of (4),
each Ci . The only difference

scripted. This results in two

and

which lead to two deperndent tests,

eses are:
HOl: Al = 0
vs Hllz Al #0
or, Hol: Kl?' = 9
ve Hpyr K #Q

The test statistics are

two orthogonal matrices, C

1

and C

2'

19

ful-

the above argument can again be used on

is that the variables of C are now sub-

non-centrality parameters,

and

and

with K_ based on C

with

one on Xl and one on )

MST
F, = -~l-w F ,
1 -
1 MSEl [dl'(b 1)d1]
and
™
. .ST2 -
2 M5E2 Ldz,(b—l)dzl
where dl and d2 are similar to 4, i.e.,
- ]
3 -t Gl
dl =
1
9 L
q, - 1 Cél
d2 =
9 ¢l

1

)

1

based on C

H02:
lez

H

if H

if H

]

02°
12°

1< 1o

10

01

02

2

is true

is true

2

+ The hypoth-

(27
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» and SST,_., SSE,, are similar to SST, SSE; hexe K is

1 2 2
replaced by Kl and Kz, respectively, i.e.,

and SSTl, SSE

1
MSTl - dl SS‘I‘1

1
2 dz SS’I‘2

g

B

Y'Q(A)Y , A, = KK

1
1 (b--l)d1 1 171

--——1——.
2 (b-l)d2

] 3 = ]
oY ., A, = KK, .
As would be expected, the results proved for C hold in the cases of C1
and C2 since only a label has been changed. But MSTI and MST2 are not

independent sgince

7o

] ]
leltszxz

i.e.,

citjcz ¥ o

and MSEl and MSE2 are not independent since

Q(A)LQ(A,) ¥ ¢

i.e.;
L
cltjcz ¥o
Therefore, F1 and F2 are not independent. Howewer, these are marginally
axact tests under H01 and H02 and each can be individually tested.

This analogy can be further extended to cases where there exist

three matrices, C,, C_, C The argument is the same only there will be

1 2 3°
three hypotheses:
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H..: A, =0, bmdmx,ut;cl
H..: A, =0, buedonxzusiwgcz

and H..: A -O,basedonl(sut.inqu,,.
The test statistics are F

i=1], 2, 3, wiare

MST

i .
!’i mzi'\. F(d .(b-l)di] , 1if HOx is truve , 1 1, 2, 3
and
MS 1
T = — 8ST, , m&ﬂq X
<li i i
MSE 1 Y'Q(A, ) A, = K!K
i (b-l)di - S R | i1
and
a = o CGle 0
1 qQ -1, Cl#0
R 27
Noticse that Pl and Fz are Jdependant “ests as are 1’1 and F3 since

M -
cltjciﬂo : 1=2,3

But Pz and F3 ars independent tests since

cibiCy = Cob4C5C,

=&, a; CztjCS- L

This is expacted since !‘2

which ars mutually orthoganal, while rl has EL.' in co.mon with rz and

ané ra are functions of entirely & fferent gi'\ ’

!'3 . Thus, the resgult is three marginally exact tests of which two aio

depandsnt.
Additional testa of single 1:qrees of fresdom may exist provided

the tj ars identical, i.«., t - t. or p, = p. The resulting comtrasts

) 3




can be constructed to be orthogonal to one another and to any of the
above sets. Unfortunately, these tests are dependent on the others.

hypothesis to consider has the form:
| I ] = = R A
HOk. gk'!_ 9 » k 1, . d

where the & are a set of orthonormal vectors such that

gil =0 ; gin =0', 1i=1,2,3; k=1, ,4a .

Also,

et~ G

[ Wi

where
d. , 1: the matrix Ci is used

0 , othrovise

.hen the 5‘(1 are « set of indepuendent contrasts and

P
1<
ot

1]
1
o
R d
L
O
9]
wn
H
e
Y
o

-0
[ L S
‘.)k_.j Py T
= Pt L ds true
ad
\\," ) \L"f\l
- =1 <% =k
i
Aty . ya o
- * -x
R Y o = I\x
o w7 Tk A "X
tarther, since 20 Y are il sorTal variates,
' R o, iy, 12, s b

22

The

(28)
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: and
! - 1
L] ] t
AL NG ada)
2 nx- . 2f ul
Now it is well known that if x " (s, ¢7), then —x-z-\' xl(-Lz-) and
o 20
1 ¢ -2 2
5 E ()1:.1 - x) ~ )‘n—l(m s independently. So it follows that
g i=1
SST.  bia'l 2
K —K e <L,
= - KN (' )
(¥ li_ l k
iy yla,
where
o= 12 (§,':_)2
¥ . K
and
15 -
S3E! NS0 P
LS 3=1
. ]
é“:x‘-}k 'KI’-K
2
ooy (O
Hence, the test statistic for testing
v, 1Y =
HoL 0
Vs Hlk: AA}; ¥ 0
3.,
!iék: -;‘_ =
Hlk: ‘-ﬁ(: # 0
is given by
SSTS ~
Ve In- R B IN 1 {
E‘k {h-1) ';S[\"'r‘.,; Pl bt Lf '(Jk is truse (29}

Since &'3C. and A'la are
yic; and ata,

tests are dependent, as would be expecled.

not necessartly equal te the null matrix, these

Further, using these single
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degree of freedom tests with the tests based on the C i=1, 2, 3,

L
leads to sets of contrasts using a maximum nuzber of degrees of freedom.
The combined set spans the paramster space of T and has a total rank of
t - 1, as this space is restricted by the fact that 1'l1 =0 . But it is
desired that the contrasts obtained using only C

' Cz, and C_ span this

1 3
space as there would be fewer dependent tests and, hence, an increase in
the overall power using this approach besides not needing pj = 5, for all
j.

In sumrary, it has been shown that, depending on the form of the
matrix, M, there may exist as many as three matrices, Cl, Cz, C3, but no

fewer than one, C,, with the properties that

1

=46, CC =1 : i=1,2,3

1]
€M 11 7 Tq,

i
and

CiCjBQ. i3, i,3=1,2, 3 .

These satrices can be used to test hypothesis of the form given in (5), and
the derived test statistics have exact distribucions, i.e., the P-distri-
bution is used. Vectors have also been shown to exist which can be used
in testing hypotheses of the form given in (28); likewise, these tests are
exact. Finally the sets of contrasts formed when *j = t will span the
space of 1 and have a total rank equal te t - 1 .

The above tests, unfortunately, were shown to be dependent as was
expected, due to the form of tj . But each individual test is exact and
if any hypothesis happens to be of interest, it can be easily testcd at
the required s-significance level with the use of a set of F tables. The
actual sets of contrasts that can be analyzed will be determined by the

form of M. Tue to the dependency of ths resulting statistics, a joint test
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“+ siym ficance using all the sets is rnot known. Such a test would have
an a-level which would be quite difficult to compute. But bounds may
exist and this fact needs further investigation (this will not be done
here). For the individual tests unere is an obvious loss in power; but,
if b is large, this might not be too noticeable.

It is of interest to (oint out that the dependency ahove can partially
be eliminated, but ther 18 a sacrifice «f the power of the test. To do
t:is 1t is necessary ¢ mke a ‘ransformation cf the form (C. can al-o be

3
added)

This might increase th- deg:oes of freedom in MST, which is formed by
pooling M.S’I‘l and HSTZ {(now indeper. »nt) but a good deal of the information
on Y would be ignorced. Also, 'he degrees of freedom for MoE, formed by
peoling MSE, and MSE (which are also independent) could be reduced by as
- -
1 - . .

mes as 3. The procedure here would be similar te the previous one., If
b were large this method could be used with much success but in general

it has little value and thus will ot De analyzed.

As & final point recall that it miocht not bwe possible to construct

more than the one mitrnix, U, . n this case there 13 only one test,
other than the single degree 2f friedo:. tests which require the t; to Se

identical. Hence, 1n this -ase thers 1o no need to constder rroblems

of dependency.
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To understand more fully the advantages of the method just derived,
it will be helpful to analyze an example. Consider a randomized block
experiment which uses the m»Zel in (1) and has a variance-covariance

matrix of the form

3
.
.
.
.
.
.

(30)

so that

we e T : (31)

Such a covariance matrix could occur in growth studies where the treat-

ments are applied to each individual at specified times. For ::i..ent

time periods one would expect a certain correlation between erxror effects;
but, as time passes and cother treatments are applied, there should be

littie or no correlation between the formey and these latter errors. Hence,
the order :n which treatments are given to an individual is not as restricted
as refore.  And, as (s evident fyom growth curves, the treatment effects

decrease willh T 22 that & typical hypothesis might be

R




Also, under these circumstances, ¢ usually varies from individual to
J

individual 30 it is correct in using a different value for each person.

Note that pj, the serial correlation between experimental units in

the same black, is restricted by the condition that

-1
d
cos(t‘l)}

which guarantees that { wili be posit’ve definite.
. S

[ 8]

:*Oj.! < {

eigenvectors of M are given bv And2rson [1948] as

w1 R
>_i=2ccs(€3\~), o= Y, e, 0t
nd
canfo i)
----- vl
_J;.‘;}
Mles v
1 -~
L . :
| :
%Sln(t’l)j
whare
§ Srai )
L, = 1} sin .
i ‘t+1
k==L
Notice that
Q0 , when t i3 odd
TR
i1, when t is even

ihe eigenroots ancé

(32)
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Also,

ni
Ai 2 cos(t+l)

7 (t+1-1)
2 cos( 1
= Ar1-i

so when t is even each eigenroot can be matched with the negative of

another, implying that

Rv=l’ v=l'2’.o-’

et

and M is nonsingular. When t = odd, M becomes singular so that

t-1
R\]:l, v=1'2’...'T

and there remains one extra latent root corresponding to the latent wector,

say g , orthogonal to M . Hence, it is possible to con:truct the

{t+} /2

two matricas, C, and C

1 2! which were defined earlier. Since all the Rv's

are identical to one, there can be no C3 matrix;, as its construction
requires ratios that are nct equal to one.

The colums of Cl are given by

Rl £0]

gvl AR * L3t+1--vl) S T Lyoeer Py

where

, 1f t is even

= if t is odd




Therefore,

(B,r oo e-tle + t even
C, = . (35)

By v s 8 t-1)/2, Lerny pp} ¢+ T 0M

Likewlise, the colums of C

5¢ are given by

1
§-v2 /2 (g-vz g‘-t:#-].-vz) v V=l g

2
where
g— , if t is even
%27 't-l
—= , if t is odd
so that
C2 = [§_ll §_27 wees , ‘_S_qzl . (36)
Then
';' , if t is even
q = Rank (Cl) = a1
= if t is odd
and
t . ,
7 if t is even
qz = Rank (CZ) =
-t—;—l- , if t is odd
Together C1 and 02 span the vector space of M, with C1 containing the

vector of the null space when M is singular; thus, there is no C, matrix.

Although it would now be an easy task to derive K, and X, and,

1 2

hence, the F-statistic, this will not be done. Trial and error has




30

] revealed that it is not necessary to recompute Cl and C2 using {35) and

(36) each time t changes in value. Since the Ci'u are not unique, there

is no loss in generality in using the bases of the vector spaces spanned

NEc e
.

by the columms of the Ci's as the columns of the C,'s. The result is a %

? . i

% patterned matrix for Cl and C2 which holds in all cases, i.e., 5
5

i ~

iiff 1 0 0 0 0 oo (ﬂ

& 0 0 1 0 Q es¢ O

i 0 0 0 0 1 sve O

by | - T

:i Cl - . . . . . . . ’ cl-J-: # 9 (37)

and
) 0 1 0 0 0 0 «++ 0
0 0 0 1 0 0 ¢es O
i 0 00 0 0 1 +es 0 R
Cé = . . . . . (3 . . ! Cé% # 9 * (38) ﬁ#

Notice that the rows of C1 and C2 are orthogonal so that

therefore,




The formula in (6) then yields

and

so that

and

= K!K

171

-ql_l

9

o o ©o o o

-1

oo:‘

o © O O O
1
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(39)

(40)

(41)

(42)




It is cbvious from (41) that SS'r1 is

8SST, = bY K'K Y

32

1l 11-.
- -=(1)}2
= h 2 (Y -
igl 21-—1'0 (X
where

q
w2} Pasginn -t Lo
o T bay 4oy 4o ¥p4-1,'Y24-1, ~ B §o1 ¥21-1,9

and from (42), SS'r2 is

SST, = b¥ K!K¥,

2 272
a2
-» § ¥ 7@)*
=1 21’0 .e
where
q
=-(?)‘B—'§ 22“21" 21-‘51"12) 21,3
q2 j=1 i=1 '] ! 2 j=1 '
Also,
b 9 2
(1) | =)
SSF R L Y I S (43)
17 45y oy VAL 2i-1, 3
where
Sy _ 1
3y gy A3
and
b 2 (o 2
SSE, = ) 1 (YZi P T Yf%) + Yf?) (44)
ES U S B ' ]
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3

whore

2

<9

—

- N
=~ .0

Y., .
j=1 243

It now becumes an easv task to test separately the two hvpotheses:

o1 1t
i

o
—
N

11 1%

l.l'l

REILE M
\ Ho.: K.t /0 .

Using {(32) and {43} snd relating this problen to growth stuales, these

»

Lypothesss booove:

and
t B = = s = ¢
o2t 127 g 2q.
P4
e .

If, howesver, the phvasical nature of the problem allows tor randomi-
zation, order “' e treatments from L to u to corrsspand to the ordering of
the plots in @a0h block s0 that i! has tre form in (30). The odd-numbered
treatmerts can 1o randorlts ascianed to the odd-numbered plots: likewise,
the even=pumbered trealwents are randemiy ass*gned to trhe even-numbered
plots.  Then wollect the (atua in two parts; one containing the observa-~

tions o oo nerentds i treatirents and one conlaining he chevrvations

s G oondererlieorad treataont s, Conputs 38 diad U0 i 10e wsual manner
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for each set of data using SST,, SSE., SST.,, and SSE Finzlly calculate

1 1 2 2"
the test statistics
ssT
P, = (b-1) —21
1l SS.’E1
and
SS'I.‘2
27 OV 5,
2
To test H_ . compare F, with a tabled F at some c-level

01 1 [qy-1 (b=1) (q3~1)]

of significance; t> test H , compare Fz with a tabled P

0 lap-1, (b-1) (q5-1) ]

at an a-level of significance.

As an example of this result consider the case where t = 8 . Then

M
cy = 0

0
0

o O O O
O O =~ OC
o O o <
Q = O ©
o o O o
~ 0O O O
C O O O

and

©c O O
o O O o
o O =~ O
o O o o
o =~ O O
O O © O
- O O O

so that

Q
.
]
roler
¥
e
o
"
et
']
-

and

!
2 o -1 o] (o 0o o0 o0
: N
0 ' , 10 2 o0 -1
Ki¥y = % ° 0 KKk
-1 0 2 o! o 0 o© oJ
!_ o ¢ o o 0 -1 0 2




Then

and

Also,

and

ilence,

and

where

and

4 2
- a(l)
SST, = b ) (Y -y
TR e S
b 4 2
= ={1)  =(1)
ssg, = § ] (y._ I SURREE I AP B
17 ) by V2imly o 2L j
4 2
oy =(2)
SST. = b (‘I -y
2 izl 21(' L4
b 4 2
- .3 @ —"e))
SSE, = Z 2 (Yzl’j YZi,- YO vy,
j=1 i=1
SST,
Fl = b §§EI‘” F[3' ]’ if H01 is true
557
F2 = b g-ss——z'\ F[3' »] if HOZ is true
oyt ¥if =@
vs Hll: Klz o Q
Hopt "1 7 T3 T T T Ty
vs Hllz Yl > T3 > Ys * Y_’,
Hozi Kzi = 9
H,.: X_7 ¥ Q

12 2~
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l.e.,

If tj is identical for each block, i.e., tj =}, where { has the
form in (30), a single deyree of freedom test can be made on the remaining

degree of freedom in the above example. Notice that
- - - - - = + =
t 1 (q1 1) (q2 1) 1, as q, *+aq, t
so there always r ~iins one degree of freedom untested using the t in

{30). A general contrast to use in this test is

- fx, -1, 1, -1, =+« , 1, -1} , if t is even

/e

t-1 -(t+1) (t+1) . o
Jt(t*'l) [1' t-1 Y -1 ! ’ l] , 1£t is odd
and the hypothesis becomes

ot 23t =0

Hipn 270

The test statistic to use has been given in (29) and is relatively easy

to compute. For the example where t = 8, this hypothesis would become

)
[

st
(o]
J

-
118
F 23
ol
w

tience, i1f 5. = 1, there exists three tests which together test for
t.m effocts of the t-1 independent » utment contrasts. And, with the

I given in {307, it is always possible using this method tc find two
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test statistics which will test the significance of t-2 of the t-l
independent contrastas. Howsver, these tasts, although exact, are de-
pendent and a joint test of significance using them is not known.

The value of this chapter consists in the derivation of an exact
test for testing sets of treatment contrasts when the variance-covariance

matrix has the form given in {3) or a form that can be transformed to

that of (3). Although randomization of t.xatments to plots is re.tricted,
no agproximations are necessary and this is an advantage. The tests, in
general, are dependent. Thus, no joint test is available and, at tizes,

some degrees of freedom are analyzed individually causing the power of

each test to be diminished. But in sitvilions where M has many pairs
of positive-negative roots that are identical, as in the given example,
or when M is singular and of small rank, the method of this chapter is
extremely vaiuable., Of special interest is the analysis given in the
above exanmple as the covariance matrix of (30) is one that furnishes a

good approximation to many real-life problems.




CHAPTER III

THE D-METHOD
In the previous chapter a class of randomized block designs was

analyzed where the model was given by

Y. s {u+301+: +e¢., =1, «++ , b (1)

“3 J - - =3
ar.d it was assumed that

ij ’ NF(Q, t ., independently, 3 = i, *++ , b

with the restriction that [ could be written as

T = 3 (It + ojN) (2)

-

where :2 and ‘j are unknown constants while M 1s a known matrix. An exact
method for testing the significence of certain sets cf treatment contrasts
was devised that regquired the construction of 3 matrix, C, possessing
certain desired properties. And in this appreach, ¥ could be either

in particular, 1 ¥ M was singular and also of

small rank, 7 oonaisted of the latent vectors orthogonal to M and the

vectors formed using parrs of positive-negative latent roots of N, 1f

there @ert any (varland The present Chapter attempts to Jive an altoo-
mative oarrroa Poy shewe situation: L., wsog where the rank of M is
wmallo: AT oo Thio o new et Pis Limited to testing one
RESL AN S SN A 2 O ) ceudag the umoal <y

"I».;:
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teacs. And its test statistics are much easier to compute than those for

the C method. 1t is noted that in this cortext, tj may be of the form

tj = 02[1t + Mo ]

where the latent roots of M are fuactions of the unknown pj, but the
latent vectors are known constants.

As before, break down M in‘, an additive decomposition, i.e.,
r
M= '24 Aigigi (3)

where Y is a non-zero latent root and 5 ig the corresponding orthonormal
vector of M, with r being the rank ot M. If one of the a. say dr i= 1,
then the remaining 3; are a set. of orthonormal vectors orthogonal tc 1 .

So let

a* = 4y i=1, ¢¢¢ , £-1

1
at=1 . (4)

If none of “he a. are ., adjust the a, 50 thit they are orthogonal to 1,

i.e., let
1
x, = (I ~=11"Ya.
-1 t t -- '
=i - a1, i=1 ",
Y i
where
— 1
T D S
] t -1 -

S S inipe

e g - I 4+ VT 1




x = se
Sy hlrl{l * hZr’-"‘. * * Er (3)

where the hij are found by solving equations of the form

af'a¥ =0, i#3,4,3=1, 0, r .

Finally, orthonormalize the g: so that

The~ the at ase a set of orthonormal vectors orthogonal to 1 . Jonstruct

the matrix

il
M* = z a¥u®' {6)
, -i=i
i=1
where
r , if no Y0 = 1
m = (7)
r-1 , 1if one Gy %Ay g is 1

so that M* is i1dempo*-nt and M*1l = 0 .
Consider now the matrix
D=1, ~=11' - Mx (&)
t ot ==
Then
\“ = {1 - L 117 — M%) (] - .:.L_ 11" - Mx)
R Ve T ==
y 2 1
= (L = 1 11')‘2 + (M*)T - 2M*(I. - = 11")
T c - € L ==

=0, as (M7 o= Mk, M*l = C




4]

implying that D is idempotent. The rank of I -3 given .

d = tr(D)
= tr(r - l-11' - M*)
t t -~ !
=t - 1 - tr(M*)
1 Jt-1-r , if noa, =1
f “lt-r , if one o, = X ) (9)
b 3 -1 -
‘3
Also,
Dl = (I, - -1—11' - M%)l
= t ot == =
=0, s M1l =0 (10)
and
bf.D = o°D(I, + 0. .MD
"3 t )
= 62 (0% + o.oMD)
Z 1
=a“ID + p (M - £ 11w - MaMD] . (11
Note that
M¥ = a* a*'
whe e
a¥ = [g{r (_J‘_*l M g;}
sc that

[}

1
%+ = 11'
Il t -—

( = 11)( - .u')'
vyt o

L2t B, (m+l) x (m+l), be an orthogoral transrformation su... that

a*, ...1__ ly)g = (a, ‘3)
Ve

R e




wher.

a = [?_11 q_zl oy Em]

and a is some constant vector such that

Then

1 t
M* o+ Y 117 = o, —%f-l}' BB'fa*, —— 11" ;, as BB' =1
/% - - mt+l

1
Yt

= (G. ’ é) (d ’ é) )

= ' + aa
Therefore,
1
M*¥ = o' + aa' - = 11'
- - t -
and
X8 ¥XI [ ] 1 1
MEM o= "M r aa'™ - o 11'M .
aq r ==
But
M= aldiag VYo'
i
so that
ao'M oo et diag(h, jal
T
o diaa(k ya! , as a'a =1
R t
= M
arid
aa's = aa' diag(Ki)ﬂ




Hence,

1
AM = - = '
MM = M t 11'M

LT
T -F119m

so that
(1= 21190 - w1 = g
and {11} become
DtjD = gzD .

Consider transforming gj to ng = Ej so that

43

(12)

(10)

(13)

Ej = D!j = Dr + DEj v 3=1, *+ , b , by
with
E(Z.) = Dt
z,) =D
and
V(Z.) = DL.D
('J tJ
= 02D » by (12) .
Since Y. are i.i.d. normal variates, . follows that
2 , .
gj N Nt(DE' 0 D), independently , j=1, *** , b
and
b ,
- 1 1 2
= - A" -— -
E- b jgl %j Nt(Dz’ b o D)

This leads to the quadratic form




ssy

1]

1]

where SST is the usual

i.e.,
S

with
b
Y =El'z
j=1

and

From (13) it fol

D is idempotent, i.e.,

whoere

i

and

44
b%!DZ,
- - - 1 b
EDroy, . ¥ o= 1Y
=1
=, = 2
bY'DY + as D =D
m
SST - ] SST, (14)
k=1

sum of scuares of treatments in the model of (1),

t _ - 5
ST=b V (Y, -Y )

N e s e

i=1

_ 1 b t
Y., and Y = z Z Y. .
ij bt 521 i=1 1)
SST, = b(Vik) 2
N T TN
SST
lows that 5 is distributed as a chi-square since
6]
SS8T
0 2 -
5 xd(k) (15)
o
tr (D)
t-1-r , if no gj =1
' from (9)

t-r , 1f one Ej =1




and R 7! ‘LD
27
£ -———b ~ gty
2 - -
o
s} ' PR
= - it
L2000 T s
BV
t - m
b g : -
— ) . -
2 L ] L
20 1=1 JER

Since i = Q, D is a0

shown bueiow that theie

contratts in the - 's,

But this is equivalent ro the hypothesis

which can be written as

where (o d w 1eoar oo
-1

orthegonal, or thoy aro tae Dag

necessaily crthogonal to 1

Usina the results ot

L

REY

j e

hi..
[ N
[ O ]
-1

dlcticns wD o the coes of o

o the Lo spac

15

SMros oy (8)
(t'a%) e as 'l 70 .

And it will be

=t statistic for testing the hypothesis

(16)

alid ard {.-ut_h:'ll]‘z'

OF 1Y and are

avpendin M, fne tesl statistac fon H, is

(17)
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Bl

where
SST, = Y'Q (A})Y , wusing (Al)
with
A=n=0D
and
!' = (_Y_iv !'I *t 'Y'l;)
and
SSE, = Y'Q(A)Y , using (A2) (18)
l1.e.,
m
SSE, = SSE - ] SSE, (19)
k=1

where SSE is the usual sum of squares of error in the model of (1), i.e.,

b t - - = 2
sse = ) (Yo=Y =Y +Y )
j=1 i=1 )
and
b _ )
= - LI
SSE, jzl [(zy - ¥)" ol

Recall tinat it was assumed in (1) that

y~o N {EMW,I1, I= diag(tj)

SSE

$0 is distributed as a chi-square if —%~Q(A)Z is idempotent. But
a a

this follows from (A4) and (12) and

SSE0

2
0

2
v xe(Re)

where




and

since

b

1<

“Z

o
n

Therefore,

and from (15)

Further, SST. and SSE

0

i

tr(—]é— Q(A)Z)
a

oiz. (b-1)b t:(Atj) . from (A6)

4

(b-1)tr(D) , from (12)

(b-1})da , from (9)
=0, from (A7)

1'D = constant , for all j .

SSE0 5

R Xb-1a'® (20)

SST
2
g

v (30, if B of (16) is true .

o are independent since

Qt(A)XQ(A) = % , wusing (A3) and (12) .

Therefore, the ratio of $ST. to SSE0 divided by their respective degrees

of freedom yields

F. = (b-1)

0

SST

0 . .
_—n is 2 .
SSEO F[d,(b—l)d) , if HO s true {21)

And H. can be test2d by evaluating

0




.3

= §ST - | SST
k=1

e

1453

-3
!

and

m
SSE - ) SSE
k=1

SSE

k

Since d should be close to t-1 there will remain only a few contrasts
in the t's that are not included in (16). If §, is identical from block
to block, i.e., tj =1, or Py =0 for all j, it will be _ 3sible to
test for the sicmificance of these contrasts. Consider hypotheses of the

form

Y . ARy = = caw
AOk' ' 0. k 1, , W (22)

and recall that the gi are orthonormal vectors with

2{';:7:, ',(:l' eee , M

aRTD = k! - = 11" - M*
ap'D = ar' (1 - =11 )
=0', as a*'M= g;' . (23)

Then

:i'zj TONLLLD. (urt'T, i;'tfi)
so that

* 'y N(w*'71 }- j

K- k2 n %k

whie re
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- 2
It is well known that if x~ N(p, 02), then XX~ x2 -£-1 and
2 1 202

n

L E (x, - ;)2 . xzv . independently. Thus,
2 . 1 n-1
g i=]
Tk N xz(k )
ak 1k
where
- »l
= k) S
SSTk b(g_ik) , from (14)
=Y Qt(Ak)X , using (Al)
with
= * * ¢
AT %R XK
and
b 2
A, = = (t'a)
k 252 k
Also,
5 = 2
SSE,_ = .E {(gj - X.)'Eﬁl , from (19)
j=1
= ¥'QA )Y

L}
Then the test statistic for testing (22) becomes

— * F 1f o is true . 24
K SSE, (1,p-1) ' Ok (24)
Hence, tests of single orthicgonal contrasts are possible. And each of
these tests are independent of the statistic given in (21).

Note that SSTQ and S$sE, are independent as
X

Dol = ¢, for all X




§ using (A3} and the

afa
X

Also, SSTF and SsE

fact “heat

= ol

for all k, from (12) and (.3} . (25)

t

5 3re independent since
~

Qt(Ak)L QA = ¢+, for all w
using (A3} and th. resul*® that
!
At {ATA Y = 3, from above .
3 N
Farther, 553 and S5E, are independent since
SAY L ay = ¢, using {A2) and (25} ,
~
4
it na SST L oana . are ndependent since
F U -
{
! S :P(RL\ = 4 , using (A1} and {23} .
; o SN
E Theve*ore, o ail cases R and ¥ are indevendent. However, the Fk are
{ R
§ usually Fendont since 2'2* 0, kK ¥ kX', 1s not necessarily zero. The
; -5 -k
resuait 15 o1 st ~F carreiated tests in addition to the independent test
BUSEISAS oo g oo tto1s possible to combind F witii any of
. \
The T, Lot T nclootost o oon the $opat hypothesis.  And this
i e M ¥ -
-l .
)
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ne simple method of testing Hé would be to test HO of (16) at a signifi-

Ho}

which is the probability of rejecting HO when HO is true, and test K

cance level of

*0 o Fra, -1

0l
of (22) at a significance level of

I .
t = z,l{'l _ F(l,b‘l] [ .101 -

Then rejact #i' 1f either H_ or HOI is rejected, and do not reject Hé if
1%

lioth HO and H_., arc not rojected.  Since Fo and F, are independent
L EN

1
™ . croqrt
v = orrirejes o
G0
= Lo~ (i-a i {l-a}
Q 1

req
and . wil

1 be tne significance level of thia test. Note however, that

number of chorzes for » and ¢

P} L I T - Y e e PR - T R & I el -
minate this dsadvantage consaider copbining I and F, into

[
¥

P N 2 - T, 5 P . b N o~ N - - i
A4 sinsiv fosr oso that the vower ofF the combined tes” 18 greater than

. . - 3 . N - U N . e. Y.nr Toie ol
either o2 the Individn Lesty The method was developed by Teler and
v e
Tar USR] ok
i }
}
. b ar -
Ll TRI - :
. RIS i :
( -




AR At

T

52

which is the probability of the F-ratio exceeuing the calculated Fj if

H6 is true. Then the critical region for this hypothesis is given by

0
we [POPl < Ca} (27)

where c, is a constant depending on an o~level of signiflcance and 0 is
a weighting factor (0 < 6 < 1) which weights Fo relative to 1.=‘1 . When
8 = 1, both tests are given equal weiyht and this is equivalant to the

method of .'isher [1954] for combining independent tests of significance.

In this case the probability ¢t a Tvpe I error for the combined test is

=
]

Pr{reject Hé!Hé}

= Pr{P0P1 < cainc')}

& dPO dP] ; given in (27)

- |

L
since Pj is distributed uniform when Hé is true. By fixing o it is
possible to solve fci Sy to find the critical value of this test.

Since FO h s more degrees of fr«edom than Fl it should be weighted
more than F,, i.e., there should be a better choice for 6 than 8 =1 .

In HO there are d independent contrasts being considered each having the

formd'!t = 1* , where 4d!1 =0, i =1, *** , d; and in H there is one
-i- i -i= 01

contrast, say gi'g = 13+1 . In totality there are t-1 possible cont-asts

so the given t's span a certain portion of the parameter space of 7T . It
seems appropriate then to weight the statistics for HO and HOl in propoxtion

to their influence on this space. A good choice for € would be

so that




?
&
3
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and

On the average this result will lead to more power in the combined test
if ¢ has bee:n chosen correctly and it eliminates having to choose o and
@y .

In summary, when the rank of M is snall a method for testing the
significance of the d contrast: in the t's as given in (16) was developed.
The derived test is unique and is based on an F-statistic, i.e., the
F-distribution is used. For all other contrasts single degree of freedom
tests exist provided tj =] . And these individual tests, although
usually correlated among themselves, are all independent of the test
for (16). FEach test is exact and easily performed, but a joint statistic
would be difficult to find. In situations where } 5= {, for all j, one
of the single degree of fruedom tests can be combined with the formulated
tasts, and a combined test results. It is then an easy task to analyze
the combined hypothu:sis at any fixed a-lewvel of significance. This set
and the other sets of ccatrasts formed, span the space of T and have a
total rank of t-1 .

To better understand the advantages of this method, it will be
helpful to sketch an example. Comsider a randomized block experiment
using the model in (1) with a variance-covariance matrix, t, similar to

the dispersion matrix proposed by Williams [1970] for the offspring in

an animal breeding experiment. There is a slight modification in that




= 02 I, + § A, a, af
t i-i-~i

i=1

where Xi igs a function of an unknown p and the gi are known vectors of

constants such that t is positive definite. Then

3

M= i X, a, a!
. i =i =i
i=1

and by constructing the vectors in (5), M* can be obtained using

m
M* = ] g* o*
k=1 k =k
whers
3, ifoneqg, =1
m = ;
2, if nog, =1
therefore,
1 m
D=1I_=~=11'- § a*f a¥ .
£t L1 % %
Compute
m
SST, = SST - ) SST, , from (14)
0 k
k=1
and

ot
SSE. = SSE - ) SSE_, from (19) .

Then one can test

vs H,: Dr #

1o
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SST
using F, = (b-1) = as a test statistic. Compare F, tc a tabled
0 SSE, 0
re

Fla, (b-1a) ¥

‘t-4 . L1f no 4, =

lt-3 » of one g, =

Ll

a

1

Single deqgree of freedom tests having the form of (22) can also be

made since tj £ § . Furthcr, instead of using the test above for HO'

‘one can make a combined test on the hypothesis

(=
11
i

which consideis 4+l independent contrasts. The method to use has been
outlined above.

In this chaj-er a new criterion has been derived for testing sets of
treatrent contrasts for the medel in (1) with thi covariance matrix of
(2) where the natrix M is assumed to be singular and of small ran:.
Since this method regquires only the calculation of the latent vectors
of the non-zeru roots of M, it has much value in the above situatioms.
It is extremely easy to compute the test statistics, as is evident from
the forrulaes in (14) and (19), and singlc degree cf freedom tests reguire
little additional work. The method of Thapter I, however, can also be
used. But this approach requires the derivation of all the latent vectors
and roots of M, and necessitates much more time and effort in cobtaining
its test statistics. So the present D-method, due t. its ease and
simplicity, would usually be preferred over the C-method when M has the

above properties.




CHAPTER IV

T™WO TESTS FOR EQUALITY COF

TREATMENT MEANS

In Chapter 1I a randomized block experiment was introduced using

the model

Y, = (n+ Bj)} +1+ gy ’ j=1, ¢ 4 Db (1)

where

gy N, (O tj), independently, 3 =1, *** + P (2)
and tj could be transformed to the special form
2
.= I+ M) . 3)
fy= 0@ * oy (

Consiaer now the case where Py = p, for all j, so that tj =}, for all j.

Of interest is the hypothesis

Byt Ty = 0, i=1, <=« , t

) Hl: at least cne T, ¥ 0 {4)

which is equivalent to the hypothesis

H.: H'

1A
]
10

vs H,: o'

1~
h S
10

where H is a t x (t-1) matrix satisfying

56
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4 il it e .

1
L) - - 11t n
HH' = I - 211" = Q (s)
'H =
H'H = I _, (6)
and
H'_l =0 .

This chapter derives an exact as well as an approximate test statistic
for testing this hypothesis. If p is known the exact test shsuld be made;
and if p is unknown, either test can be made provided there exists an
estimate for p. In either case one can analyze the effects of all the

treatment contrasts.

Consider now the derivation of the exact test statistic. Since

the Xj are i.i.d. normal variates it follows that

H'Y, ~ N(H'T, %-H'tH\ . )]

SST* = ozbffﬂ(ﬂ'tn)'ln'i. . (8)

SST* \ vbur ~1
Then is a chi~square variate if (H'}H) (H'$H) ~ is idempotent. This

2
g
holds since
-1.2 -
et adn ™ - 1. wim et
Therefore,
SST.'\, 2 A a i
-'-0-5'— XealA®) {9 1

with

o = trptn) e

= t-1 (10)




an :

1% =

[S¥1+ 4

E'H(H'tﬂ)-lﬁ'l .

Notice that (H"J,‘H).l can be written as

vhere wy is a latunt root (positive) and X igs the corres; cading latent

vector of ('t} " ., Hence,

2 2
* B RN .
! . 1 BN -
t
50 e nvper ool
Oy * O
] ﬂl: \* 20 (11)

But tne ;iH' are linear corcinations of the rows of b' aud are mutually

»rthogonal since

YYo=t as 'Y o=

= . . . #  , ut v  are orthogonal .

’




So this hypothesis is equivalent to the one in (4), i.e.,
Hy: H'1 =0, or, 7, =0, for all 1

vs H.: H'l#g, or,atleastone-rino
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It will be shown below that there exists a test statistic for testing

this hypothesis.

Using Appendix A, let

A = H(H'EH) T2

50 thec

SST* = Y'Q (A)Y , using (Al)
and le+

SSE*

It

Y'Q(A)Y , using (A2)
Recall that it was assumed that

YN (BN, 2] . E o= dlag()

SSE*
2

‘Then
o

MA = olHE e tuetn laro?

"02A

and this result with that of (A4) implies that

1 2 3
-—-Q(A)t) - -= Q(A)L
(02 02

Herce,

is distributed as a chi-square if -li- Q(A)T is idempotent.
o

Now,

(12)
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where

e = tr(gz Q“\;

= -}2— (b-l)er(A{) , from (A6)
g
1 TS S 2 . .
== (b-Dtx{ Gi'§H) ~(H fH)0“] , by cy: ic permutation
]

= (b-1) (t-1)
and

Ae = 0 , from (A7)

since

A = URECP TR, for all §

There fore,

SSE* 2
52 X(b-1) (£-1)

(©) (13)

ssT* 2
22 e

SSE* are independent since (A3) and (12) imply that Qt(A)ZQ(A) = ¢ .

(0) , if H. of (4) is true. Further, SST* and

and from (9) 0

Therefore, SSE* and S$ST* are independent chi-squares and their rcovio
divided by their respective degrees of treedor ic1?
£~‘A. -
F* = (b-1} T2 v F , if H, of (4) is trac . (14)

T [(t=1),b-1) (e=-1)

. -1 A .
In order to evaluate (H‘tH) congsider the orthogonal mat._ix, #%,

%
H*—s[ﬁf*é—z] : )
t

t v, where




NN

4
M‘ [21' L ) » (lt] diaq(li) :
2t
pe
so that
1
lﬁ-—)
Hz E i [gl' *0 e s g.t] diag‘i
Therefore,
- q
a
11 !
M RTee] Vvl | B I PRI atag(/3] |
KA M 2y’ ' 2 i
At
= diag(ay) asgigj-O; i¥]
and
E ) .
I+ oMM = {I+p diag(),i)l
. -1
= diag(i + pli)
Ther
(s ]
31
1 1l 1 1 -1 N
o PRI I ataglt (e )|
M I * DM M H = (?'i' ' 9:‘ diag\’iil : ::‘i’ } -
L—i"ta

t
- E it 3, 4
1 =1 -1
-
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(17)
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e e

AT e = - —y—

with
_ )\z ™~ Y {18
i
and
t
-1 2 i— -1
Y o= -0 1 At e, o .
02 .-t igl re e §
Therefore,
ofrrtrny ™t 2 62 paop T lye
t
=I -p ] A H* g g!H*, from (16)
2
- t , ¢t -
| T -0} AME'g.alH ~ =05 ) AM1l'0,)H's
L Te-1 L =i=1 == =i
| ;1 i=i JE i 1 i i
= | (19)
] t t
i l [l l 2
- == | A*l'a,)o!H -(t - ¥ A%(1l'a,) )
!‘ /e 1 1 i1°=3 t 1 1 ]
Buu
H'{H —1~H't;
2 ibas 2 g
c“H ' IHY) =g (20)
S U 3!
L/t |
Equating (19} and (20) yields
t t
. (2 A;l'eiﬂ'ei)(i X;L'eiegﬂ)
_}:}., ' -1 _ - *y Y . - 2 1 1 -
SRR LIRS S § AfH'a GlH - p Y 3
t-p ) A(l'w,)
1 1 - -1

i begiad
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so that

el s

2

olnmtm " - 0, - i AR 000 -

Therefore,

SST* = ozbijn(s'ta)'ln'i_

t 2
[? \$ L e, Yo 9%]
t 1
- - - 2 2
= ¥ - * ' -
P{YQY -op § AFEi0.e )" - p S ;
- ’
t pz)s;(} g,)

1 L
2
= SST - pSST1 -p SS‘ZE2 (21)

where SST is the usual sum of squaves ‘tregtﬁiqnt in 2 randowized block

s
FE

R
§
E._ 3 experiment, i.e.,
Pl SST=b § (¥, ~Y )
P {=s1
B LT
E ; SST, = b | AfEQ.e) (22)
P i=l
¥ : * [ l;l
u % A$(l'a,) {20.0,)
Poe SST, = b 4 )
a 2 t 2

a t-p ) A1)

i

5 Further, recall

]
p 5
: 3
] &
]

e . |
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T, RIS, O WYV X A

ks

¥ TR, P

SIE* = Y'Q{nY
b - .
= Y Y'AY. - bLY'AY
S M me e .

Tk, TR
ATl ﬁi(!j Yo e,

5ot . b :

R N L f T S R 0. 152 ) L S
L ey ey v TA T TemR =1 t 2
AT0 4 J £ - ;} 1\4 ).*(119‘)
i i=p 74
;
s iE - pESDL -l ovi (23)
i —

where 230 is the sual sum of sguarces of error in a RBD, i.e.,

Lot - _ X .
= Loy T ¥, =Y b4

. (= i .J

j=1 a=1 J

+
}
(X - 10'Qu

? ( (24) o
s ‘

b 1 1 3 . +
S5 = }v 2 1 . . --J--
Sy v z
: £ =p ) Ar(loa,)

Using (21 anﬁ 123, with (14) it would now oe pessible to test che
hyeothesis of (4) provided p is Xnown oo can be estimated. However, the
arplied statistic.an may desire an eusicr pprcash o this preo.lea that,
alth uy  not exact, can still be used with & high degree of success. It
ig natural then to turn to an approximate F-statistic. Tn this method

55T Trom (22) and SUE from (?74) ure vwsed to form the orviginal F-reliy and
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foraulaes arz then necessary to obtain the adjusted dagrees of freedom.
The following method is generally referred to as a "Satterthwaite
method" through reference to the work of Satterthwaite [1946). Consider

any quadratic foarm, say SSC, and let

nsSsc

\ B U " E(ssO)
with
o . 222(850)
v(ssC) :
Then
E{(u) = n
and
_2
Vi{u) = > v(SSZ)
E~(SSC)
4
_ 4E_(ssc) _v(ssc)
viisso) E%(sso)
= 2n .

Then u has the same first two moments as a chi-square digtribution with

n degrees of freedor g0 that, approximately,

u'f'x: .

This method can now be applied to SST of (22) and SSE of (24) and
the results will be similar to thowe of Box [1954b]. The sanre approximate

F-test will be derived. S0, us'ng SST sbove, let

2
. 2E"(ssT)

vV (SST)

a {¢=1}e , in Box's notatiomn,




whe o

2n (8s8T
LBEASST) (25)

- Then
u, = . (26)
Recall that, watn the O given in (5), SST can be written as
P LY Y
— e
where
{ : 1 g
b t(L'bi)
and
b
1
. el wrEatyp z 33 .
i=1
Also,
WO, = WAL+ ) (- g 1)
1 1
= k]! Yo = k% .- I W |
R AL AP P AR A
= ! ) as 'L =0 . (27)

Then

: Ly .
f48S1y - Llteyr S PR ANATY

i) + bttt from (27)

o TR AR T T

e - %—5'*5 , £ Hy of (4) is true . (28)




e i < eSO

—erpe—_

Purther,

v(8sT)

2tr(g fo b) + au'.bo,u
2eelb -2 uhd -f b et , w2
2 1 1 1l ¢
2ert? - 210P-Lp 1 + 2 udn) ¢ artte
et - 2uf-fpnt e L - ak
2{tr($2) 1'1; 1+ = (1'¢1) }+ ac'lt

z{tr(tz) -2 S (111)2} , if Hy of (4) is true

t2

Substituting (28) and (29) in (25) yields

(er(h) - £ 1-¢112

£ =

-1 {eet? - 2 1-¢ 1+

Now it is well known in Analysis of Variance that SSE can be

expressed as

vhere

Also,

so that

2 0
(1'tl)
t2 h ]

SSE = Y'Q(A)Y , using (A2) of the Appendix

Y v N (B, 2, § o= dagh)

E(SSE) = tr[Q(A)L] + E(X')QA)E(Y)

= (b-tr@.}) + EQCIQWIE() , from (A6)

- (b-l)tr(Qtt) , from (A7)

 if H of (4) is true

. (29)

(30)




since

EGrA = [+ 6010 + 2001 = 117)

3 3

1 1
- {4+ ej)}' +1 - (u+ Bj) i - ettt
- 1' ’ for all j . (31)

Therefore,

E(SSE) = (b-l1)E(ssr) , 1if HO of (4) is true .

Further,
V(SSE) = 2tr[Q(A)IQ(A)L] + 4E(Y')Q(A)IQ(A)E(Y")
= 2tr{Q(A)IQiA)L] , from (A7) and (31)
= (b-1)2tr(Afa}) , from (A8)
= (b-1)V(SST) , 1if Ho of (4) is true
So let
_ 2E2(SSE)
Ny ® "V(ssE)

2(b-1)“r” 55T
(b-1) V(SST)

(b-1) (t=1}e¢ , using (25)

Hence,
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nszE
Y ® E(ssE)

¢ (b-1) (t-1) SSE
(b-1) E(SST)

o {t-1l)e SSE

E(SS8T)
and
u. A 2 (32)
2 Y X(b-1) (t-1e  ° '
Now
SST = !_!'Qt(A)! » using (Al)
and
SSE = Y'Q(A)Y , wusing (A2)
where
™ - - -]= '
A=Q =TIy -¢git .
Then

an = QttQt , for all j
so this result and (A3) imply that
Qt(A)EQ(A) = ¢

and SST and SSE are independant. It then follows from (26) and (32) that

Yy )

" Tt-De/ ®-D (t-De

SST SSE
(b-1) (z(ss'r) // E(SST) )

SST
(b-1) SSE

F

& L)
¥ Frie-1e, (b-1) (t-1e) ¢ LE B of (4) is true (33)
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If (t-1)z, where € is given in (30), is not an integer, interpolate in
the F-table to find the critical point. Note that equation (30) and
{33) are the same as Box's equation (4.4).

Recall now the example presented in Chapter IJ using the model of

(1) with a variance-covariance matrix

A . (34)

Of interest iz the hypothesis given in (4) on the significance of the
t-1 independent contrasts in the t's. The first approach will be the
exact one using the statistic given in (14). To compute SST* of (21)
and SSE* of (23) it will be necessary to have values for x; of (18),
a;l , and Q,a; , where A and o, are given in equations {33) and (34) of
Chapter II. The values for these are given in Table I for t = 2, *«+ , 6
and t = 8 .

Hence, fir<d a value for o or compute an estimate of it. Then, to
obtain SST*, calculate ‘_' and use the tables with the formula given in

(21). To find SSE* compute !j - Y, for each j and use the tables with

the equation in (23}, Firally calculate
SST*
® o ‘b_
F {b-1) SSE*
and compare this with a tabled ¥ at some a-level of

{e-1,(b-1) (t-1}])

significanca.




Teble I--continued

t =5
iml im2 jm3 i=4 im5
Q & % Q% O Q8
[1-2/37 [s/37] [ 8 {s/37 [ 142/27
4+3/3 5/3 -2l [-5/3] [-4-3/3]
6-2/3 0 -12 0 6+27/3 divisor = 10/3
-4+3/ 3| |-s/3] |- 2 5/3 -4-3/73
| 1~2/3 | |-s/3] | 8 [-5/3] | 1+2/3
As 3 1 -1 -3
S+ e =0 A_3
i1+t o L o a.i
/3 : vEY /3
t=6
i=1 i=2 i=3 i=4 i=5 in
Q 9 Q. 2, 2 2, Q. 24 Q, 85 Q0 2
- .889001 [ 2.34564] [ 2.29783] [ 2.92»4eq 2.10460] [ 1.30176]
.154aa| 2.92468 0.67476| [-1.30176! |-3.16572] |-2.34564
.73412¢ | 1.30176{ |-2.97264] |-2.34564] | 1.06092 2.92488
.73412) |-1.30176] |-2.97264 2.34264 1.06092] |-2.92488
.15488| |-2.92488| | 0.67476 1.30175] 1-3.16572 2.34564
|- .889%0) |-2.34564] | 2.29788] |-2.92488 2.10480] |-1.30176
ae| 1:-80180  1.24684  0.44480  -0.44480 -1.24684 -1.80180
1] 1+1.80180p 1+1.24684> 1+0.44480p 1-0.444800 1-1.24684p 1-1.30180p

2.34192

0.0

0.67026

¢.0

divisor = v31.50306

0.257%6

0.0
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T.ol: I--continued

e

i=1

R 4 % 2 R 23
F-0.172954] | 0.030314] 9.306186] Co
{ H i
1-0.0311707 : 0.464243 0. 30J186 Lo
0.074064 0.278248 !-o 102062 i*o
0.120060 0.161229] | 31031~! | -0
0.1.0060 -0.161229! ' 0.510410’ R
0.C74064]  -0.408248! :-0.102062 .G
-0.031170 ~0.454242]  © 2.3061:0 v
|-0.172954! 1-0.303014! | 2.3c6is. -D
i+ | _1:8793€ 1.53208 o o
i 1+1.6793%  1+1.33008 S :
all | 2.67:47 2.0 S 0.07650
2i= | i
i=3 18 BiT
% 35 2% 2 P
" 0.41479é} Co0.408248 | 0.2015¢7 J
-0.213674; | -0.408248 ~o.4b%o)9; -
0.457692] L oL ; 038w
0.2513559; § 0.408248] | -0.1B2670 o
0.253569] |-0.408248° | -u s
-0.457692, | 2.0 ? 3 Yoo =0
-0.210674] | 0.408248 -0 D
| 0.414798 . -0.408248 G.a85AT L.
o) 0:34730
1] 1-0.34730
3| 0.39ss 0 S
ivisor = %

i=3

——

.464243]
L161229
.408248
.303014
.303014
. 408248
161229
. 454243]

i=4

Q. @

3173

L 0L 161009

.3030 14

,
NN

.303014

RIS
b 4043
.408248

!
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_1_'1:2} - <!4[2(1+¢>$2 + (t-2) (14-2;,)'2]
= 04&. + Lo (t-1) + 2p2(2t-3)l
Therefore,

er?) - 2147 4 Zl—z(nnz | - ~ :

a“{t + 220 - He s o) + DT+ Sie e 2 &--1)12} |

4 (t-1) (t°2fv)2E 202 (k1) (£-2) ]
= g 3 el + °

t (t-1) {t-Zp)
Hencs,
rf - ¢ 140’
= 2. 2 12, 12
(-1 ety - £ 141 + St

oteen)? 20)? /) o4 Lmb) (=2 )2 2 (1) (=202 |
~ 5 )¢/ of SRR 4 20 S
t2{t-1) t (-1 (£=2p) 2
2 -1 7 ) - ‘ »
. l"“ 2,2 L4l (62) Z-i s
i (t-1) (t~2p)° |

which is equation (6.10) in Box's notaticn. Now. compare the F-statistic

in (35) with a tabled F at soume a-level of significance.

[(t=1)e,{b-1) (t-1)¢e]
G course, the value of p or an estimate of ¢ will be needed to compute
é, and if (t-1)e is not an integer then on~ must interpolate in the
F toblen.

In sunm_\a:.‘y,‘rhsre has been derived both an exact and approximate

wthod for testing the hypothesis of (4). The exact test statistic is

given in {14) and rejuires much time and lubor unless tables of latent
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In oxdex to compare the two test sﬁatistlcs givan in equaticna {14) -
and (33) of~Chapter ¢V it is neoessary to flnd an eatlmate of p, say p .
Thxs wxll now be done for the example glven in the last chapter. using =

N |

. the varianca-covariance matrix

n, o, . I
I a.' o. ‘
oa 10 .c ! ‘ ’
i - 025, Lo, L . 1)

L L o
{ ‘b' .n .n E
| * ‘qt
i p 1

A Monte Carlo stud’ is nade comparing Jiflerent known significanc. levels,
o, with the significan~e levels uging the 'exact' tecr =statietic In

equation (14) abowe, i.e.,

SST* . .
(' a 1y = - 22 A £
F('exact') (b~1) Sop® F[(t-l)(b—l)(t~l)} + if Hy is true (2)

the ap roximate test statistic in equation (33) above, i.e.,

F(approx.) = (b-1) —onn F

SSE ((t-1)€, (b=1) (t=1)e] ' if HO is true (3)

and the usual F-statistic which can be computed using equition (23) arove,

i.e.,
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‘ ssu' . . .
r(usual} = (b~ 1) = SSE \ [(t;l)"h";:' (6-1)1 ' AT Hy is true . (4

Tha tgm ‘exact’ will };é?\‘uea £‘o designate the esxact test of the last
a:!aéi:@r waen an estimai:_e? forp is \ﬁéd; this, of ~c;ur§e“. will aot be an
exact tést of s'i{mifi\cmce but will be referred to as the 'exact' test
in order to keep in mind its structure. Notice that the only difference
betwsen the usual statistic and the approximate sta.tistic is the degrees
of freedom uz-Jd when finding the critical mgim. The results of the
study prove to be helpful in determining which of the above atatistics

ig approprinte wher. the § in (1) is used.

In the examgle of Chapter IV i: was shown in equation (36} that
E(sfE) = (L~1)E(SST) , 4if he is true

= g2 (b-1) (t-l)(E;:Q-) , 1f 8 is tre

50 thuu
e[, 1 _E(ssE)
=3 [1 22 1) ('E"-i)] ‘ )

Now iflE(SSE) is replaced by

in equation (5) the resvlt is an uwmbiased satimator of p when o® is known,

i-ﬁy;

sty . _ SSE '] 2

oo ..,.' .. W BN AL o o L S own 6
with

E(p) = ¢

5
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If 02 is unknown it can be «atimated using the C method derived in

Chapter II. 1In equation (43) of that section

b 41
br =(1) , =(1),2
SSE, = ) } (¥ - ¥ B S D
17 5 gE aeLg T Tae, 4

where °*

SSEl ) X2

g2 (b-l)(ql°1)
so that

B(SSE) = (b-D) (g, ~La” . (7)
4
Also, from equation (44) of that section
b 92
3 ={2) =(2).2
SSE, = § 0§ [y, . -%,. , -Y¥.L +¥ )
2 j=1 i=1 21,3 2i,

where

SSE2 . x2

o2 (b-l)(qz-l)
so that

EISSE,) = (b-1) {q,~Lia” . (8)
Combining (7) and (8) vields
E(SSE. + SSE.) = {h-1){g. + q. - 2}a°
1T s U B

_ 2
= {1} {t~-1}o , as 94, + 9, " t

Heice ,

58 %
., 858 + SSE,

¢ F T (z-1

, , . 2 . , L
is an unbiased estimator for ¢ . An easier method. for cbtalning




SSE. + SSE. would be to first calculate SSE and then subtract off SSE

1 2 3
where
b - 2
SSE, = | Wy = w.) (9)
i=1
with
b
- 1
i=d 7 v
b jm1 3
and
/t (nu) -(2))
— 1Y -Y ’ <
> 3 .3 is even
W, =
3
a2y ( (1 _ -<z))
2(t'2) Y Y'j ’ t is odd
so that '
SSE - SSE
~2 ' 3
o T 1) (£-2) (10)
Substituting the above estimate in (€) yields
( ) 62 unknown | : {11)
t-1 SSE-S'.:E3 v @ n

Motice that when ai’ is k;_\oun,- o is an unbiased estimator of p, but when
02 is vnknown this is n‘ot.trm. ‘fimever. in {11) qz 48 replaced by the
unbiased eatimator in (1G). It is also relatively easy ta compute o of
(6) and (11). B¢ :ause of these two points. i.e., pseudo-unbiasedness and
ease of computation, this estimate of ¢ was used in the Monte Carlo study
given below. Cther esiimates of ~ could be ,deﬁsed but none are as
s:ipple to compute as this me. | |

Consider now -;ener:.,ting & random sﬁ@la from a multivariate normal

population haviry mean O ana the varianre-c @vuiance matrix given ia (1),
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where p and 02 are specified. Using this sample it would then be easy
to comyute the ¢ of (11), assuming o? is unknown, and the test statistics
in (2), (3) and (4), assuming p is unknown. Comparisons could be drawn
batween the rsal value for 0 and the estimated values using S . Also,
one could compare the three statistics above to see which appears to be
wmost correct whenﬁ is used. This has been done in a serxies of experi-
ments using a UNIVAC 1108 computer where t=3 and bm3, 5; t=5 and b=3, 5, 7;
t=8 and b=3, 5, 8, with 02 =1, and p = 0.45, 0.22, 0.0, ~-0.22, ~-0.45 .
Each experiment was run 1500 times, varying t, b, and p and using
d{fferent samples for each replication. In each replication, p of (11)
was computed and the resulting value was used to calculate the test
stat'stics in (2), (3) and (4). If the value of p ever exceeded the
limits on p a8 given in equation (32) of Chapter II, i.e.,{z cos(z{-i-”-l ’
then this end value was used instead of 8 . This resulted in a partially
biased estimate of p but a more correct one. Counts were then made
of the number of times a certain test statistic fell in the critical
region using three different significance levels, a = .10, .05, .025 .
Table II below lists theze counts in terms of probabilities.

A large number of values for . of {11) were also printed out.
These indicated that this estimator was fair in that region where o was
positive; but with a negative p, 5 performed poorly. Consequently, as
the tables indicate, the test statistic, F('exact'), is not good when
5 is used. A better estimate of ¢, however, might improve this test
greatly. Surprisingly, F{usual) was relatively accurate, even when lo]
varied from zero. The statistic that was most consistent over the values

for p, t, and b was F(approx.) which tumed out to be somewhat conserva-

tive. Another estimate of ¢ might also improve this test.
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It is suggested then that when { has the .~vm of (1) and ¢ is known,
one should use F('exact') of Q\nptgr IV to test By . When ¢ ig unknown,
estimate p uaing (6) if a° is known and (11) if o2 is unknown. Then to test
Hy, evaluate F(approx.) of (3) and this p . If one knows that lp| is not
toc far fror zero, but the actual valus of p ia unknown, calculats
P(usual) of (i) and do not even estimate p . Finally, use another estimate

of p 1f a bevLcer one is found.




CHAPTER VI
SUMMARY

In this paper methods have been proposed for testing tha sffects
of certain sets of treatment contrasts in a randomized block axperiment

where the errors are not independently distributed but have, instead, a

variance-covariance matrix of the form

by = "Z‘It* U RS (1)

These testc raquire reither that the number of blocks exceed the number of

treatments nor the computation cf large order inverse matrices, as does

Hotelling's '1‘2 test. In fact, some of them use the usual test ratio

- S5ST
SSE

F

: ‘Chapter 1T presents the C-method which transforms the original design
into.o'm in which the errors are indapendsntly distributed. An example on
gserial :corxelation within blocks is examined using this approach. Although
not unique, the test statistic dsweloped here has an exact distribution,
namaly, the F-distribution, and is not too difficult to derive. tmfart\maﬁaly,

it is useful in testing only sets of treotmsnt contrasts and nct in testing

the equality of all the treatment means.

In Quapter IJI the D-mathod is propoged which can be used as an

altemmative ¢t~ the C-mothod when the rank of M is smail. This section
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also analyzes anbexample in animel breeding whexe this method appears io
be vary uzaful. The test statistic dexived is "q“;te easy to obtaif\ gnd 1
the uet;s of treatment. contrasts conzidered almost span the parawstar

space of t .

Chapter IV gives two methods which can be used in teating ali -1
independent contrasts. Botn require that p j be ‘identical to p, for all jJ,
and either that p is known or an estimate of p can be obcained. If p is
knowb, one approach is exact while the other is approximate; if p is
unknown, both are approximate. The example of Chapter II is studied in
detail and some tables are given vhich are useful in deriving the test
statistic of the exact method.

In Chapter V a Monte Carlo study is made on the methods of Chapter IV,
using an easily computed estimate of p and the example of Chapter II. The
resuits indicate that the approximate test is quite accurate while the
'exact' nne does not perform well due to the inaccuracy of the estimator
of p . Surprisingly, the F-test used when the errors are independently
distributed performs quite well for this example.

In ccnclusion, if one is intezésted in testing the eguality of all

the treatment means, use

(1) the exact method of Chapter IV, if pj is identical to p,

for all j, and p is known;

(2) the approximate method of Chapter IV, if pj is identical

to p, for all j, and p can be estimated;

(3) Hotelling’'s Tz it b > t; pj is identical to p, for all j;

and the necessary inverse matrix is easier to compute than

(1} or (2) abowe;

Lo

i s

-?




(4) ths r~method of Chapter III, if (1), (25' and (3) do not

‘hold and the rank of M is small enough. In this case oy

doeg not have to be identical from block to bloek.

If one is satisfied with testing certain sets of treatment contrasts,

(1} the C-method of Chapter II, if these sets can be

obtained;

(2) - the D-method of Chapter III, if the rank of M is zmall

and these gsets can be deriwved;

(3) Hotelling's '1‘2 ifb > ¢; pj ig identical to p, for all 3i;

and the inverse matrix is easier to compute than (1) or (2);

(4) the single degree of freedom tests of Chapter II, if p 3 is

identical to p, for all j, and individual treatment compzari-

sons are of interxest.
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APPENDIX A

SOME RESULTS ON MATRICES

Let A and B be any t x t matrices and let Qt(h) and Q{A) be tb x &b

matrices such that
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Further,
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